Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61.093
Filter
2.
Crit Care ; 28(1): 107, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38566126

ABSTRACT

BACKGROUND: Pre-clinical studies suggest that dyssynchronous diaphragm contractions during mechanical ventilation may cause acute diaphragm dysfunction. We aimed to describe the variability in diaphragm contractile loading conditions during mechanical ventilation and to establish whether dyssynchronous diaphragm contractions are associated with the development of impaired diaphragm dysfunction. METHODS: In patients receiving invasive mechanical ventilation for pneumonia, septic shock, acute respiratory distress syndrome, or acute brain injury, airway flow and pressure and diaphragm electrical activity (Edi) were recorded hourly around the clock for up to 7 days. Dyssynchronous post-inspiratory diaphragm loading was defined based on the duration of neural inspiration after expiratory cycling of the ventilator. Diaphragm function was assessed on a daily basis by neuromuscular coupling (NMC, the ratio of transdiaphragmatic pressure to diaphragm electrical activity). RESULTS: A total of 4508 hourly recordings were collected in 45 patients. Edi was low or absent (≤ 5 µV) in 51% of study hours (median 71 h per patient, interquartile range 39-101 h). Dyssynchronous post-inspiratory loading was present in 13% of study hours (median 7 h per patient, interquartile range 2-22 h). The probability of dyssynchronous post-inspiratory loading was increased with reverse triggering (odds ratio 15, 95% CI 8-35) and premature cycling (odds ratio 8, 95% CI 6-10). The duration and magnitude of dyssynchronous post-inspiratory loading were associated with a progressive decline in diaphragm NMC (p < 0.01 for interaction with time). CONCLUSIONS: Dyssynchronous diaphragm contractions may impair diaphragm function during mechanical ventilation. TRIAL REGISTRATION: MYOTRAUMA, ClinicalTrials.gov NCT03108118. Registered 04 April 2017 (retrospectively registered).


Subject(s)
Respiration, Artificial , Respiratory Distress Syndrome , Humans , Respiration, Artificial/adverse effects , Diaphragm , Ventilators, Mechanical , Thorax
3.
PLoS One ; 19(4): e0299693, 2024.
Article in English | MEDLINE | ID: mdl-38568930

ABSTRACT

BACKGROUND: Mechanical ventilation is commonly used for managing respiratory failure in chronic obstructive pulmonary disease (COPD) patients, but weaning patients off ventilator support can be challenging and associated with complications. While many patients respond well to Non-invasive ventilation (NIV), a significant proportion may not respond as favourably. We aimed to assess whether high-flow nasal cannula (HFNC) is equally effective as NIV in reducing extubation failure among previously intubated COPD patients. METHODS: This systematic review was carried out in line with PRISMA guidelines We searched PubMed, Scopus, Web of Science, and Cochrane library from inception until February 15, 2023. Randomized Clinical Trials (RCTs) of adults at high risk for extubating failure were included. We examined the use of HFNC as the intervention and NIV as the comparator. Our outcome of interest included, reintubation rate, length of hospital or intensive care unit (ICU) stay, adverse events, and time to reintubation. The Cochrane risk-of-bias tool was used for randomized trials to assess risk of bias. RESULTS: We identified 348 citations, 11 of which were included, representing 2,666 patients. The trials indicate that HFNC is comparable to NIV in preventing reintubation after extubating in COPD patients. In comparison to NIV, HFNC also produced improved tolerance, comfort, and less complications such as airway care interventions. NIV with active humification may be more effective that HFNC in avoiding reintubation in patients who are at extremely high risk for extubating failure. CONCLUSION: The inconclusive nature of emerging evidence highlights the need for additional studies to establish the efficacy and suitability of HFNC as an alternative to NIV for previously intubated COPD patients. Clinicians should consider the available options and individualize their approach based on patient characteristics. Future research should focus on addressing these gaps in knowledge to guide clinical decision-making and optimize outcomes for this patient population.


Subject(s)
Noninvasive Ventilation , Pulmonary Disease, Chronic Obstructive , Respiratory Insufficiency , Adult , Humans , Respiration, Artificial , Cannula , Randomized Controlled Trials as Topic , Oxygen Inhalation Therapy/adverse effects , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/etiology , Respiratory Insufficiency/therapy , Respiratory Insufficiency/etiology , Oxygen
4.
Crit Care ; 28(1): 112, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582934

ABSTRACT

BACKGROUND: Approximately one in three survivors of critical illness suffers from intensive-care-unit-acquired weakness, which increases mortality and impairs quality of life. By counteracting immobilization, a known risk factor, active mobilization may mitigate its negative effects on patients. In this single-center trial, the effect of robotic-assisted early mobilization in the intensive care unit (ICU) on patients' outcomes was investigated. METHODS: We enrolled 16 adults scheduled for lung transplantation to receive 20 min of robotic-assisted mobilization and verticalization twice daily during their first week in the ICU (intervention group: IG). A control group (CG) of 13 conventionally mobilized patients after lung transplantation was recruited retrospectively. Outcome measures included the duration of mechanical ventilation, length of ICU stay, muscle parameters evaluated by ultrasound, and quality of life after three months. RESULTS: During the first week in the ICU, the intervention group received a median of 6 (interquartile range 3-8) robotic-assisted sessions of early mobilization and verticalization. There were no statistically significant differences in the duration of mechanical ventilation (IG: median 126 vs. CG: 78 h), length of ICU stay, muscle parameters evaluated by ultrasound, and quality of life after three months between the IG and CG. CONCLUSION: In this study, robotic-assisted mobilization was successfully implemented in the ICU setting. No significant differences in patients' outcomes were observed between conventional and robotic-assisted mobilization. However, randomized and larger studies are necessary to validate the adequacy of robotic mobilization in other cohorts. TRIAL REGISTRATION: This single-center interventional trial was registered in clinicaltrials.gov as NCT05071248 on 27/08/2021.


Subject(s)
Early Ambulation , Robotic Surgical Procedures , Adult , Humans , Retrospective Studies , Quality of Life , Cohort Studies , Prospective Studies , Control Groups , Intensive Care Units , Respiration, Artificial , Critical Illness/therapy
5.
Rev Esc Enferm USP ; 58: e20230343, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38587402

ABSTRACT

OBJECTIVE: To analyze the evidence of content validity of the Nursing Outcomes "Mechanical Ventilation Response: Adult" and "Mechanical Ventilation Weaning Response: Adult", for patients with severe COVID-19. METHOD: Methodological study developed in two stages: literature review to construct the definitions of the indicators and analysis of the evidence of content validity of the nursing outcomes by a focus group. RESULTS: All the conceptual and operational definitions developed for the 56 indicators were considered clear and precise. However, 17 indicators were excluded because they were deemed not to be relevant. The definitions of the magnitudes for 17 indicators of the Nursing Outcome "Mechanical Ventilation Response: Adult" and 22 indicators "Mechanical Ventilation Weaning Response: Adult" were thus constructed. CONCLUSION: The development of definitions and validation by experts makes the use of these outcomes and their indicators more understandable and precise, favoring their use in clinical practice and providing greater detail in assessment and recording.


Subject(s)
COVID-19 , Respiration, Artificial , Adult , Humans , Focus Groups , Research Design
10.
Eur Rev Med Pharmacol Sci ; 28(7): 2724-2736, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38639512

ABSTRACT

OBJECTIVE: Dexmedetomidine has demonstrated potential in preclinical medical research as a protective agent against inflammatory injuries and a provider of neuroprotective benefits. However, its effect on the short-term prognosis of patients with sepsis-associated encephalopathy remains unclear. This study aims to explore the underlying value of dexmedetomidine in these patients. PATIENTS AND METHODS: This study enrolled patients with sepsis-associated encephalopathy from the Medical Information Mart for Intensive Care (MIMIC)-IV database, and they were divided into two groups based on dexmedetomidine therapy during hospitalization. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were utilized to balance the inter-group baseline differences. Kaplan-Meier (KM) curves with log-rank test and subgroup analysis were also employed. The primary outcome was 28-day mortality, and the secondary outcomes were in-hospital mortality, intensive care unit (ICU) stay time, hospital stay time, and the incidence of ventilator-associated pneumonia (VAP). RESULTS: After PSM, 1,075 pairs of patients were matched. In contrast to the non-dexmedetomidine cohort, the dexmedetomidine cohort did not exhibit a shortened ICU [4.65 (3.16, 8.55) vs. 6.14 (3.66, 11.04), p<0.001] and hospital stay duration [10.04 (6.55, 15.93) vs. 12.76 (7.92, 19.95), p<0.001], and there was an elevated incidence of VAP [90 (8.4%) vs. 135 (12.6%), p=0.002]. The log-rank test for the KM curves of dexmedetomidine use and 28-day mortality was statistically significant (p<0.001). The results showed that dexmedetomidine was associated with improved 28-day mortality [hazard ratio (HR) 0.46, 95% confidence interval (CI) 0.35-0.61, p<0.001] and in-hospital mortality (HR 0.50, 95% CI 0.37-0.67, p<0.001) after adjusting for various confounders. In the following subgroup analysis, dexmedetomidine infusion was associated with decreased 28-day mortality in most subgroups. CONCLUSIONS: Dexmedetomidine administration was significantly associated with reduced short-term mortality among patients with sepsis-associated encephalopathy in the ICU. However, it also prolonged ICU and hospital stays and increased the incidence of VAP.


Subject(s)
Dexmedetomidine , Pneumonia, Ventilator-Associated , Sepsis-Associated Encephalopathy , Humans , Dexmedetomidine/therapeutic use , Respiration, Artificial , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/epidemiology , Intensive Care Units , Critical Illness , Retrospective Studies
11.
Nursing ; 54(5): 17-25, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640027

ABSTRACT

ABSTRACT: Mechanical ventilation is rarely a simple matter. Skill and knowledge are required to operate the ventilator modes, choose the optimal settings, and understand many monitored variables. Supporting the patient safely and effectively is the top priority in providing mechanical ventilation. This article discusses mechanical ventilation in adults.


Subject(s)
Respiration, Artificial , Ventilators, Mechanical , Adult , Humans
12.
Nursing ; 54(5): 25-26, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640028
13.
BMC Vet Res ; 20(1): 145, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641793

ABSTRACT

BACKGROUND: Human records describe pulmonary edema as a life-threatening complication of electric shock. Successful management requires prompt recognition and intensive care. However, in companion animals, electrocutions are rarely reported, even though domestic environments are full of electrical devices and there is always the possibility of accidental injury. Therefore, it is important for veterinarians to know more about this condition in order to achieve successful patient outcomes. CASE PRESENTATION: A 3-month-old male Labrador Retriever was presented with a history of transient loss of consciousness after chewing on a household electrical cord. On admission, the puppy showed an orthopneic position with moderate respiratory distress. Supplemental oxygen via nasal catheter was provided, but the patient showed marked worsening of respiratory status. Point-of-care ultrasound exams suggested neurogenic pulmonary edema due to electrical shock close to the central nervous system and increased B-lines without evidence of cardiac abnormalities. Mechanical ventilation of the patient was initiated using volume-controlled mode with a tidal volume of 9 to 15 ml/kg until reaching an end-tidal carbon dioxide ≤ 40 mm Hg, followed by a stepwise lung-recruitment maneuver in pressure-controlled mode with increases of the peak inspiratory pressure (15 to 20 cm H2O) and positive end-expiratory pressure (3 to 10 cm H2O) for 30 min, and return to volume-controlled mode with a tidal volume of 15 ml/kg until reaching a peripheral oxygen saturation ≥ 96%. Weaning from the ventilator was achieved in six hours, and the patient was discharged two days after admission without neurological or respiratory deficits. CONCLUSIONS: We present a rather unusual case of a neurogenic pulmonary edema subsequent to accidental electrocution in a dog. Timely diagnosis by ultrasound and mechanical ventilation settings are described. Our case highlights that pulmonary edema should be considered a potentially life-threatening complication of electrical shock in small animal emergency and critical care medicine.


Subject(s)
Dog Diseases , Electric Injuries , Pulmonary Edema , Respiratory Distress Syndrome , Humans , Dogs , Male , Animals , Pulmonary Edema/etiology , Pulmonary Edema/therapy , Pulmonary Edema/veterinary , Respiratory Distress Syndrome/veterinary , Lung , Respiration, Artificial/veterinary , Electric Injuries/complications , Electric Injuries/therapy , Electric Injuries/veterinary , Dog Diseases/etiology , Dog Diseases/therapy
14.
Semin Perinatol ; 48(2): 151889, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38565434

ABSTRACT

Patient-triggered modes of ventilation are currently the standard of practice in the care of term and preterm infants. Maintaining spontaneous breathing during mechanical ventilation promotes earlier weaning and possibly reduces ventilator-induced diaphragmatic dysfunction. A further development of assisted ventilation provides support in proportion to the respiratory effort and enables the patient to have full control of their ventilatory cycle. In this paper we will review the literature on two of these modes of ventilation: neurally adjusted ventilatory assist (NAVA) and proportional assist ventilation (PAV), propose future studies and suggest clinical applications of these modes.


Subject(s)
Interactive Ventilatory Support , Humans , Infant, Newborn , Infant, Premature , Respiration, Artificial , Diaphragm , Tidal Volume
15.
Semin Perinatol ; 48(2): 151885, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38570268

ABSTRACT

Respiratory insufficiency is almost ubiquitous in infants born preterm, with its incidence increasing with lower gestational age. A wide range of respiratory support management strategies are available for these infants, separable into non-invasive and invasive forms of respiratory support. Here we review the history and evolution of respiratory care for the preterm infant and then examine evidence that has emerged to support a non-invasive approach to respiratory management where able. Continuous positive airway pressure (CPAP) is the non-invasive respiratory support mode currently with the most evidence for benefit. CPAP can be delivered safely and effectively and can commence in the delivery room. Particularly in early life, time spent on non-invasive respiratory support, avoiding intubation and mechanical ventilation, affords benefit for the preterm infant by virtue of a lessening of lung injury and hence a reduction in incidence of bronchopulmonary dysplasia. In recent years, enthusiasm for application of non-invasive support has been further bolstered by new techniques for administration of exogenous surfactant. Methods of less invasive surfactant delivery, in particular with a thin catheter, have allowed neonatologists to administer surfactant without resort to endotracheal intubation. The benefits of this approach appear to be sustained, even in those infants subsequently requiring mechanical ventilation. This cements the notion that any reduction in exposure to mechanical ventilation leads to alleviation of injury to the vulnerable preterm lung, with a long-lasting effect. Despite the clear advantages of non-invasive respiratory support, there will continue to be a role for intubation and mechanical ventilation in some preterm infants, particularly for those born <25 weeks' gestation. It is currently unclear what role early non-invasive support has in this special population, with more studies required.


Subject(s)
Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Infant , Infant, Newborn , Humans , Infant, Premature , Respiration, Artificial , Continuous Positive Airway Pressure/methods , Gestational Age , Pulmonary Surfactants/therapeutic use , Surface-Active Agents , Respiratory Distress Syndrome, Newborn/therapy
16.
Semin Respir Crit Care Med ; 45(2): 169-186, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38604188

ABSTRACT

Severe acute respiratory failure (ARF) is a major issue in patients with severe community-acquired pneumonia (CAP). Standard oxygen therapy is the first-line therapy for ARF in the less severe cases. However, respiratory supports may be delivered in more severe clinical condition. In cases with life-threatening ARF, invasive mechanical ventilation (IMV) will be required. Noninvasive strategies such as high-flow nasal therapy (HFNT) or noninvasive ventilation (NIV) by either face mask or helmet might cover the gap between standard oxygen and IMV. The objective of all the supporting measures for ARF is to gain time for the antimicrobial treatment to cure the pneumonia. There is uncertainty regarding which patients with severe CAP are most likely to benefit from each noninvasive support strategy. HFNT may be the first-line approach in the majority of patients. While NIV may be relatively contraindicated in patients with excessive secretions, facial hair/structure resulting in air leaks or poor compliance, NIV may be preferable in those with increased work of breathing, respiratory muscle fatigue, and congestive heart failure, in which the positive pressure of NIV may positively impact hemodynamics. A trial of NIV might be considered for select patients with hypoxemic ARF if there are no contraindications, with close monitoring by an experienced clinical team who can intubate patients promptly if they deteriorate. In such cases, individual clinician judgement is key to choose NIV, interface, and settings. Due to the paucity of studies addressing IMV in this population, the protective mechanical ventilation strategies recommended by guidelines for acute respiratory distress syndrome can be reasonably applied in patients with severe CAP.


Subject(s)
Community-Acquired Infections , Noninvasive Ventilation , Pneumonia , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , Respiration, Artificial , Noninvasive Ventilation/methods , Respiratory Insufficiency/therapy , Respiratory Distress Syndrome/therapy , Intubation, Intratracheal , Community-Acquired Infections/therapy , Oxygen
19.
Med Arch ; 78(2): 112-116, 2024.
Article in English | MEDLINE | ID: mdl-38566872

ABSTRACT

Background: Respiratory distress syndrome (RDS) is a major cause of morbidity and mortality in preterm infants. Early nasal CPAP and selective administration of surfactant via the endotracheal tube are widely used in the treatment of RDS in preterm infants. Objective: The aim of this study was to compare the need for intubation and mechanical ventilation after surfactant delivery between LISA-treated and INSURE-treated premature infants with respiratory distress syndrome (RDS). Methods: Retrospective registry-based cohort study enrolled 36 newborns admitted to the neonatal intensive care unit of the "Santa Maria" Hospital of Terni between 2016 and 2023. As a primary outcome, we followed the need for intubation and mechanical ventilation within 72 hours of life, while the secondary outcomes were major neonatal morbidities and death before discharge. Results: The LISA group and the INSURE group included 13 and 23 newborns respectively. Demographic features showed no significant differences between the two groups. The need for mechanical ventilation in the first 72 hours of life was similar in both groups (p >0.99). There were no significant differences in morbidities. Conclusion: LISA and INSURE are equally effective modalities for surfactant administration for the treatment of RDS in preterm infants.


Subject(s)
Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Infant, Newborn , Humans , Infant, Premature , Surface-Active Agents/therapeutic use , Retrospective Studies , Cohort Studies , Pulmonary Surfactants/therapeutic use , Respiration, Artificial/methods , Respiratory Distress Syndrome, Newborn/drug therapy , Lipoproteins
SELECTION OF CITATIONS
SEARCH DETAIL
...